
QCourse 570-1 Project Report: Implementation of
FRQI Method using Qiskit
Guillermo "Bill" Gonzalez

University of Texas at San Antonio

Abstract

The FRQI (Flexible Representation of Quantum Images) method of Quan-
tum Image Representation (QIR) was first published in 2009[8] and has re-
mained one of the most referenced techniques in Quantum Image Representa-
tion. This paper describes an implementation of the FRQI method using an al-
gorithm written in Python using the Qiskit library in order to fully understand
some initial steps required moving towards performing real-world Quantum
Image Processing (QImP).

Keywords FRQI, Quantum Image Representation

1 Introduction
Quantum Image Processing (QImP) presents an interesting realm in the quantum comput-
ing universe that is not as commonly discussed in quantum related media sources as are
other surging areas of quantum computing such as encryption, optimization, chemistry,
material science and the quantum internet. However, quantum image processing should
not be ignored as it has the potential to further progress in many emerging deep tech
fields such as autonomous vehicles, local and national security, product manufacturing and
robotics to name a few. Some research has shown that quantum image processing could
offer significant advantages over current classical methods. For example, edge detection
using a quantum version of the Sobel method, QSobel, has been shown to be theoreti-
cally faster.[10] Of particularly interesting use case is edge detection related to astronomy
or more succinctly, image processing of astronomical images otherwise known as space
imagery.[6, 2]

In the realm of quantum image processing, much research has been done regarding
the topic and related topics such as quantum image representation (QIR), quantum image
compression, quantum image encoding, quantum image encryption, and quantum image
retrieval. This paper describes a study in quantum image representation and the steps
take to develop a working implementation of the FRQI circuit.

Developing a stable Quantum Image Representation is the first step to realizing the
full potential of Quantum Image Processing. Even simple experiments are of interest in
order to develop working models when we do climb out of the NISQ era.

Guillermo "Bill" Gonzalez: billgonzalez@webheadtech.com, http://www.webheadtech.com, Thanks to Dr. Abu
Yakaryilmaz and QWorld.

1

https://orcid.org/0000-0002-0922-0750
mailto:billgonzalez@webheadtech.com
http://www.webheadtech.com


2 Motivation
The amount of literature, including unpublished and published research papers and one
textbook on the topic of quantum images[1] covering quantum image representations is
increasing yearly. However it is hard to find easily reproducible working implementations
of the techniques and methods to study in-depth in a local and controllable environment to
facilitate further learning. There are at least two publicly available GitHub repositories[2,
3] as example implementations, but the team that wrote one of the examples did not
have a focus on quantum image representation but on image classification. The second
example did not seem to comprise a complete working implementation and if so, it only
addressed hard-coded image sizes and utilized an alternate gate synthesis that created a
distraction from the original circuit design. This paper documents the steps taken towards
the development of working implementation to further personal research and satisfy a
curiosity.

3 Literature Review
Papers covering various quantum image representation techniques, methodologies and al-
gorithms were studied. There are now more than 30 various representations that have been
presented and some are "enhancements" to some of the initial representations like FRQI
and NEQR among others. Researchers have presented reviews of at least 15 methods[5]
up to 28 methods[9]. Some researchers have even taken the time to categorize the vari-
ous representations and study their complexity based on the number of qubits, the circuit
depth and quantum volume.[5]

The main topic of this paper was to identify and implement one of these quantum
image representation techniques so the focus was placed on FRQI due to the fact that
it was one of the first proposed techniques and is easy enough to understand. Most of
the seminal papers written covering FRQI were studied to gain an understanding of the
basic methodology.[6, 10]. Much of the existing literature to this day include discussions
of FRQI. In addition numerous technical papers related to improvements in FRQI were
also reviewed. A video on an enhanced FRQI (EFRQI) was also viewed to gain a better
understanding of the FRQI method.[7]

The basic idea behind this representation is that FRQI encodes the intensity value of
a pixel by rotating a single qubit to a specific angle. Additional qubits are utilized to
represent the pixel location of a specific pixel within an image.

A paper from 2018 identified two shortfalls of FRQI at that time which have since been
overcome.[4]

1. We can only deal with small images

2. We cannot deal with rectangular images

The true goal of this literature review was to find information on actual programs that
implemented any of these algorithms. Research was conducted on many of the different
algorithms available like real ket, FRQI, NEQR and many others, but because most im-
plementation examples focused on FRQI, focus was placed on FRQI for its advantages,
simplicity and available information.

2



Figure 1: Initial sample image selected for this paper.

4 Methods
Initial steps involved executing in-text FRQI Jupyter noteboks provided as part of a an
IBM Qiskit Textbook chapter[10]. The simple examples provided in this Qiskit Textbook
were executed, but the examples were simplistic and only covered manually created FRQI
circuits utilizing rudimentary gate operations in a hard-coded fashion. The greater task
was to implement a suitable encoding mechanism that could work for a square image of
any size. The next step involved generalizing the examples and defining a function to take
an arbitrary, binary image, i.e. black and white pixels, and generate an FRQI quantum
circuit that could be executed and then measured to retrieve the original image.

Initially, work was performed on writing some of the circuits and image representations
by hand for a small n (n=1, n=2 ) in order to confirm the FRQI circuit creation code devised
for this paper. The hand-designed circuits were compared to the generated circuits to verify
that the rotations are created correctly within the FRQI circuit. The FRQI function is
modified to accept an array of pixel intensities.

For the first part of the function a counting algorithm to increment the pixel positions
using bit masking to increment the pixel position was developed. This counting function
generates the quantum gates that increment the pixel position and composes most of the
quantum circuit. In other words, most of the qubits are used to track the position of the
pixel being encoded.

I then pulled in a sample set of data, a collection of simple shapes, but for this first
project I wanted to encode a single image.Fig. 1 is of an initial image used for experimental
purposes with the pixel positions overlaid on the image for the corresponding plot of qubit
measurements. Additional images were utilized as well for comparison.

3



5 Experiment
5.1 Development Environment
Much work was performed in setting up a development environment in order to implement
the FRQI method. Initial attempts involved working with Google Colab, Cirq and a few
other platforms. The completed solution was implemented on an Anaconda and Jupyter
stack utilizing a single Python project leveraging Qiskit.

5.2 Classical image preparation
Just like standard data preparation in data science workflows, data must be prepared.

5.2.1 Image Selection

We start with very basic images. We start with a few shapes. We use circles, triangles,
squares and pentagons.

5.2.2 Import Images as Grayscale

We import the images using the cv2 library Convert the images to grayscale and they are
read in.

5.2.3 Resize Images

We resize the original 200-pixel by 200-pixel images to 16-pixel by 16-pixel images.

5.2.4 Thresholding

Thresholding is the binarization of an image. In general, we seek to convert a grayscale
image to a binary image, where the pixels are either 0 or 255. A simple thresholding
example would be selecting a threshold value T, and then setting all pixel intensities less
than T to 0, and all pixel values greater than T to 255. Thresholding is a technique in
OpenCV, which is the assignment of pixel values in relation to the threshold value provided.
In thresholding, each pixel value is compared with the threshold value. If the pixel value is
smaller than the threshold, it is set to 0, otherwise, it is set to a maximum value (generally
255). Thresholding is a very popular segmentation technique, used for separating an object
considered as a foreground from its background. A threshold is a value which has two
regions on its either side i.e., below the threshold or above the threshold. In Computer
Vision, this technique of thresholding is done on grayscale images. So initially, the image
must be converted in grayscale color space.

5.2.5 Otsu Thresholding

In Otsu Thresholding, a value of the threshold isn’t chosen but is determined automatically.
A bimodal image (two distinct image values) is considered. The histogram generated
contains two peaks. So, a generic condition would be to choose a threshold value that lies
in the middle of both the histogram peak values.

5.2.6 Binary Thresholding

Binary Thresholding uses the pixel intensity and if it is greater than the set threshold use
255 (white) otherwise set to 0 (black).

4



Figure 2: Start of FRQI circuit for 4 x 4 image.

Figure 3: End of FRQI circuit for 4 x 4 image indicating measurement of the qubits which represents
image retrieval.

5.3 Quantum encoding
We must first put image data into a quantum state. There are various techniques available.
Some of the earliest are FRQI Flexible Representation of Quantum Images) and NEQR
(Novel Enhanced Quantum Representation). Fig. 2 shows the first few gate combinations
required for the first four pixels. The qubits highlighted in yellow represent the position
of the pixel and the last quibit is used to encode the color of the pixel.

5.4 Quantum image retrieval
Fig. 3 shows the measurement portion of the FRQI circuit which represents image retrieval.

6 Results
I was able to ultimately duplicate results discussed in the Qiskit Textbook section covering
FRQI circuit execution.[10]

6.1 Basic Simulator
Fig. 4 is a representation of an image using an IBM Simulator, specifically the aer_simulator,
that shows that for the test image selected for this paper, the pixels at positions 0000, 0001,
0010, 0011, 0111, 1011, 1101, 1110 and 1111 are preceded by a 0 representing the color
black. The pixels at positions 0100, 0101, 0110, 1000, 1001 and 1010 are preceded by a 1
indicating that those pixels are colored white.

5



Figure 4: Results quantum image representation at retrieval using an IBM Simulator.

6.2 Advanced Simulator
Fig. 5 shows the results of the sample image retrieval on Fake Athens. In this case, all
colors (0 and 1) are represented for all pixels which is not a desired results. This is due
to the configuration of the Fake Athens simulator which more closely resembles a real
quantum device. To get closer to what would actually be run on a real device by feeding
the transpiler with a device coupling map (for instance, Athens). The optimization level
is set to 3.

7 Future Work
• Execute the algorithm developed for this paper against a true quantum computer.

• Implement a compression function to group same colored pixels to reduce the number
of gates and gate depth.

• Utilize some novel circuit design in an attempt to further the number of gates and
gate depth.

• Utilize a quantum image representation technique and then to perform some quantum
image processing that could be shown to be better than current classical methods.

• Implement simple quantum image processing experiments on real quantum comput-
ers versus simulators

Acknowledgement
Many thanks to Dr. Abu Yakaryilmaz and QWorld for all the support.

6



Figure 5: Results quantum image representation at retrieval using the Fake Athens IBM Simulator which
more closely resembles a real quantum computer. These measurements indicate very noisy results.

References
[1] Salvador E. Andraca and Fei Yan. Quantum Image Processing. Springer, 2020.
[2] Lucia Garcia. citiesatnight. https://github.com/Shedka/citiesatnight. 2019.
[3] Matt Harding. Quantum-Image-Processor. https : / / github . com / mharding15 /

Quantum-Image-Processor. 2019.
[4] Matt Harding and Aman Geetey. Representation of Quantum Images. https://

www.cs.umd.edu/class/fall2018/cmsc657/projects/group_6.pdf. Project
report of Course CMSC657 , Fall 2018, University of Maryland. Dec. 2018.

[5] Marina Lisnichenko and Stanislav Protasov. “Quantum image representation: a re-
view”. Feb. 2022.

[6] Robert Loredo and Mehdi Bozzo-Rey. How To Start Experimenting With Quantum
Image Processing. 2021. url: https : / / medium . com / qiskit / how - to - start -
experimenting-with-quantum-image-processing-283dddcc6ba0.

[7] Nourhan Nasr. Quantum Image Processing. 2022. url: https://www.youtube.com/
watch?v=USxaZI1XPjg&t=476s.

[8] Phuc Le Quang et al. “Flexible Representation of Quantum Images and Its Compu-
tational Complexity Analysis”. In: Proceedings of the Fuzzy System Symposium 25
(2009), pp. 185–185. doi: 10.14864/fss.25.0.185.0.

[9] Jie Su et al. “An improved novel quantum image representation and its experimental
test on IBM quantum experience”. In: Scientific Reports 11.13879 (2021).

[10] The Qiskit Team. Quantum Image Processing - FRQI and NEQR Image Represen-
tations. 2021. url: https://qiskit.org/textbook/ch-applications/image-
processing-frqi-neqr.html.

7

https://github.com/Shedka/citiesatnight
https://github.com/mharding15/Quantum-Image-Processor
https://github.com/mharding15/Quantum-Image-Processor
https://www.cs.umd.edu/class/fall2018/cmsc657/projects/group_6.pdf
https://www.cs.umd.edu/class/fall2018/cmsc657/projects/group_6.pdf
https://medium.com/qiskit/how-to-start-experimenting-with-quantum-image-processing-283dddcc6ba0
https://medium.com/qiskit/how-to-start-experimenting-with-quantum-image-processing-283dddcc6ba0
https://www.youtube.com/watch?v=USxaZI1XPjg&t=476s
https://www.youtube.com/watch?v=USxaZI1XPjg&t=476s
https://doi.org/10.14864/fss.25.0.185.0
https://qiskit.org/textbook/ch-applications/image-processing-frqi-neqr.html
https://qiskit.org/textbook/ch-applications/image-processing-frqi-neqr.html

	Introduction
	Motivation
	Literature Review
	Methods
	Experiment
	Development Environment
	Classical image preparation
	Image Selection
	Import Images as Grayscale
	Resize Images
	Thresholding
	Otsu Thresholding
	Binary Thresholding

	Quantum encoding
	Quantum image retrieval

	Results
	Basic Simulator
	Advanced Simulator

	Future Work

